- Các LLM chuyên biệt như StarCoder2 mang lại hiệu quả và hiệu suất cao cho các tác vụ cụ thể mà không cần sự cồng kềnh của các công cụ chung chung như ChatGPT, Microsoft Copilot hay Google Gemini.
- Các mô hình nhỏ hơn như Vicuna-7B đang trở nên phổ biến hơn vì chúng dễ triển khai hơn và tiêu tốn ít tài nguyên hơn. Ví dụ, Vicuna-7B có thể chạy trên một chiếc smartphone Android nếu có đủ RAM.
- Việc đào tạo một mô hình lớn hơn tốn kém hơn. Các công ty dễ dàng xây dựng mô hình ngôn ngữ của riêng mình với các mô hình nhỏ hơn, tập trung vào một chủ đề duy nhất.
- Retrieval-Augmented Generation (RAG) cho phép triển khai một mô hình ngôn ngữ nhỏ hơn không cần đào tạo trên bất kỳ dữ liệu cụ thể nào. Thay vào đó, nó có thể lấy câu trả lời từ tài liệu và cho người dùng biết chính xác tài liệu nào chứa câu trả lời.
- Một LLM được sử dụng để quản lý nhà thông minh không cần có các tham số chứa thông tin về lập trình. Nó có thể được đào tạo trên một tập dữ liệu nhỏ hơn nhiều với các tham số thực sự liên quan.
📌 Tương lai của AI hướng tới các LLM chính xác, chuyên biệt, tập trung vào các tác vụ cụ thể như lập trình. Các mô hình nhỏ hơn, ít tốn kém hơn trong đào tạo và triển khai sẽ trở nên phổ biến, giúp các công ty dễ dàng xây dựng mô hình ngôn ngữ riêng phù hợp với nhu cầu sử dụng.
https://www.xda-developers.com/chatgpt-gemini-future-of-ai/